April 23-26, 2018 | Fort Worth Convention Center | Fort Worth, TX | Exhibits April 24-26

Control of Gelatin Particle Size and Uniformity to Improve Fidelity Using FRESH 3D Bioprinting

MMI:  Biomaterials Medical Manufacturing Innovations (MMI) Program

Expert May 10, 2017 11:15 am - 11:25 am

Bookmark and Share

Andrew Hudson, Research Staff, Carnegie Mellon University
Adam Feinberg PhD, Associate Professor, Carnegie Mellon University

3D printing of soft materials with an elastic modulus < 1 MPa, such as hydrogels and collagen, is challenging because they can easily deform during the printing process. To address this, we previously developed a technique known as Freeform Reversible Embedding of Suspended Hydrogels (FRESH), which uses a syringe-based extruder to embed and then gel fluid inks within a sacrificial support bath of gelatin microparticles. The print resolution is largely dictated by the size of the gelatin microparticles into which the ink is embedded. To minimize these defects, we have developed a new coacervation process that decreases the gelatin support particle size from ~60 μm using the originally mechanical blending approach down to ~10 μm. This has enabled biopolymers such as collagen to be 3D printed with an accuracy of 30 μm using syringe needles with internal diameters < 100 μm in comparison to an original accuracy of 120 μm, representing a fourfold increase in print resolution. Increasing the 3D printing resolution of collagen and other biological hydrogels is important for using FRESH as a biofabrication approach to engineer tissues for in vitro disease modeling and future in vivo applications in regenerative medicine.

Sponsored by:   

 

Andrew Hudson

Research Staff
Carnegie Mellon University

A graduate of Carnegie Mellon University, Andrew studied Biomedical Engineering

Adam Feinberg PhD

Associate Professor
Carnegie Mellon University

Dr. Feinberg is the principal investigator of the Regenerative Biomaterial